Nanoadhesion and Nanopeeling Forces of Carbon Nanotube on Substrate

نویسندگان

  • Kouji Miura
  • Makoto Ishikawa
  • Naruo Sasaki
چکیده

Detachment and peeling experiments are expected to provide information on adhesion forces and adhesion energies of solid surfaces in contact. Such experiments are important in powder technology, in the formation of adhesive films and in understanding how cracks propagate in solid and how fracture occurs (Israelachvili, 1992). Recently, nanoscale peeling has been studied by extending biological polymer chains such as proteins using atomic force microscopy to clarify the mechanical mechanism of unfolding of the polymer chain. Such experiments have attracted much attention worldwide as a new method of spectroscopy for the structural analysis of biological macromolecules (Evans et al., 1991, Rief et al., 1997). On the other hand, it has been more recently reported that carbon nanotube arrays with a curly entangled top show a macroscopic adhesive force of approximately 100 newtons per square centimeter, almost 10 times that of a gecko foot, and a shear adhesion force much stronger than the normal adhesion force (Qu et al., 2008). Here, we report the elementary processes of adhesion and peeling of a nanotube on a substrate and have performed adhesion and peeling experiments using a multiwalled carbon nanotube (MWCNT) (Ishikawa et al., 2008, 2009). An MWCNT has been attached parallel to the cantilever to easily peel off the substrate to elucidate the elementary process of adhesion and peeling mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and investigation of a transparent and flexible loudspeaker and microphone based on carbon nanotube

Transparent acoustic sensors and actuators are a new generation of acoustic transducers that can create an evolution in the microphone and loudspeakers industries. These transducers with properties like transparency, flexibility, flatness, very low weight and thickness have a great potential for various applications like public speakers, active noise cancelation systems, displays, cell phones a...

متن کامل

Buckling of multi wall carbon nanotube cantilevers in the vicinity of graphite sheets using monotone positive method

In this paper, a monotone positive solution is studied for buckling of a distributed model of multi walled carbon nanotube (MWCNT) cantilevers in the vicinity of thin and thick graphite sheets subject to intermolecular forces. In the modeling of intermolecular forces, Van der Waals forces are taken into account. A hybrid nano-scale continuum model based on Lennard–Jones potential is applied to ...

متن کامل

ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs) composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of...

متن کامل

Comparison of two methods of carbon nanotube synthesis: CVD and supercritical process (A review)

A carbon nanotube (CNT) is a miniature cylindrical carbon structure that has hexagonalgraphite molecules attached at the edges. Nanotubes look like a powder or black soot, but they'reactually rolled-up sheets of graphene that form hollow strands with walls that are only one atom thick.Carbon nanotube has been one of the most actively explored materials in recent year(s) due to...

متن کامل

In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes.

A new tool for studying the process of carbon nanotube chemical vapor deposition (CVD) synthesis is described. By rotating the substrate in situ during the CVD process, the orientation of floating nanotubes with respect to the substrate is changed by interaction with the gas stream. Nanotubes lying on the surface of the substrate, however, will maintain their relative orientation. As a result d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017